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This paper calculates thermocreep and Poiseuille flow in a cylindrical capillary 
using the Bubnov-Galerkin method. Asymptotic formulas are obtained for flow in 
the viscous regime with slip. 

In a theoretical investigation of isothermal and nonisothermal flow of a rarefied gas 
in a cylindrical capillary in [i, 2], the kinetic equation was used with the BGK inter- 
molecular collision operator model. In both cases the operator model was used with unit col- 
lision frequency, determining the gas rarefaction parameter 6 only in terms of the viscosity. 
However, as was noted in [3], the use of unit collision frequency does not enable one to 
correctly describe cross effects, due simultaneously to the gas viscosity and thermal con- 
ductivity. In addition, as is shown by calculations, in this case the thermal slip velocity 
of the gas near the wall is not the same as the value obtained from direct solution of the 
kinetic equation with the Boltzmann operator for intermolecular collisions [4]. 

Since references [i, 2, 5] have dealt in sufficient detail with the statement of the 
problem and the procedure for obtaining integral transfer equations for the functions ~p(r) 
and ~T(r), which determine the macroscopic velocities Up,T(r) and the dimensionless Poiseuille 
flow Qp(6p) and thermocreep QT(6T), we restrict ourselves here to writing these equations in 
the form 

~1::, (r} := q~,, (r) -4- . . . .  6r, %, (r') Ko (r, r') dr' - -  - -  % (r') Ko (r, r', e h )  , k = p ,  T. ( 1 )  
' .-t ! r '  - - -  r .-t . I r '  - -  r x l  

Here the free terms Ck(r) have the form 

dr' 6~ Kz(r, r', eT) , ,. (2) ,l,p (r) == 1, 'I~, (r~ -- 1 6,..t K~ (r, r') Ir' -- rl ~ !r - -  r v, 
tJx t-' 
-z Z :  

The rarefaction parameters ~p and S T in Eq. (2) are defined as 6p, T = (V~/2)(R/%p,T) , where 
%p and %T are the average molecular mean free paths, calculated from the viscosity and the 
translational part of the thermal conductivity, respectively [4]. The parameters dp and dT 
are linked by the relation ~T = 26p/3. 

The integration areas ~I and Ea in Eqs. (i) and (2) are determined by the intervals of 
integration over the polar angle ~ in the limits 0 < ~ < 2 , and in the variable s in the 
ranges 0 ~ s ~ so and 0 ~ s ~ l, respectively, where so--and I are the lengths of the inter- 
cept SM and the chord MN (see Fig. i in [i, 5]). A family of kernels for the integral equa- 
tions has been introduced into Eqs. (i) and (2) of the type 

% 

K~(r ,  r')-j c~exp (--c z -  8 ; ' [ r ' - - r l  ) d c ' c  

o ( 3 )  

i (1--e ' :)  exp(--6h IrM--rl/c) c ~ exp i - - c  z -  tS~lr'--r.~A ) dc, 
K~ (r, r', el~) = . 1-- (1--e~) exp (-- 6j~ Ir,u - -  rN/c ) c 

0 

k-~p ,  T. 
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It should be noted that an incorrect statement has been assumed in [i, 5] to simplify writ- 
ing, in setting up the integral equation of transfer type, Eq. (i). However, all the com- 
putations were based on the solution of the equations in the form of Eq. (I). 

Two accommodation coefficients for the tangential momentum Ep and E T have been used in 
Eqs. (1)-(3). The need to consider two accommodation coefficients arises from the fact that 
in the nonisothermal gas flow, in contrast with the isothermal flow, the temperature of mole- 
cules reflected from the wall differs from the wall temperature, because of a tangential tem- 
perature gradient (and, possibly, a radial gradient). In this case one must introduce the 
nonisothermal coefficient ET, from the definition of the Maxwellian kernel for molecular 
scattering at the wall [6] and the accommodation coefficient for tangential momentum [3]. 

The dimensionless Poiseuille flux Qp(6p) and the thermocreep flux QT(~T) are determined, 
as in [i, 2, 5], from the formulas 

O~ ( 6 , : / =  - s,---, 

0 

To solve the integral equations (i) it is convenient to go to a polar coordinate system 
with variables a and s and to introduce the family of integral operators of the type 

b 
(5) 

B'~;~' = t $~ (s) ds c ~ exp __ ca __ 6,!s dc -F ~h~. (s) ds c~ (l - -  e~) exp [ - -  c = - -  6~ (s -:- So)/C ] dc, k = p ,  T. 
C 1 - -  ( 1 - -  eh) exp ( - -  6~l/c) (6)  

~" 0 ~' 0 " 

Then we can write Eq. (i) as 

~p (r) : 1 - 6~  Ko@p, ~T (r) =: 1 - -  .6.._ Kz 1 6~ ~ .  ( 7 )  

Integral equations (7) belong to the class of Fredholm equations of the second kind. 
Therefore, they can be solved using one of the approximate methods of solution -- the Bubnov-- 
Galerkin method [7]. 

We shall choose a system of base functions g i(r) (i = 0, i, 2, ...). From the symmetry 
of the problem considered, it follows that the base functions ~i(r) must be even functions 
r = Irl. Then the desired functions can be represented in the form of infinite series with 
the corresponding expansion coefficients 

~'k (r) = <~ Ckt tfz (r) ---- ~ Cki rzl, k - - p ,  T. 
~ .  �9 ( 8 )  
i = 0  i==O 

Results were obtained in [1, 2, 5] of an investigation using the second approximation 
of the Bubnov-Galerkin (i = 0, i) method. The rate of convergence of the method in the dif- 
ferent approximations remains unknown. Therefore, the solution is described briefly here in 
the third approximation, i.e., we seek the functions ~(3) k in the form 

~3) (r) = A h + B~r ~ -:- C~r ~. (9) 

If we substitute Eq. (9) into Eq. (7), it gives a discrepancy which is typical of the 
difference between the exact solution of Eqs. (7) and the approximate solution, of the fol- 
lowing form: 

R~ (r, A~, B~, C,,) = $~3) ( r ) - -  ~a ( r ) - -  -~. Rn$~ ~) (r), k = p, T. (Z0) 

To obtain an approxlm~te solution, we need to choose coefficients Ak, Bk, and C k in such 
a way that the discrepancy R k should be a minimum. One can obtain the least discrepancy only 
when the discrepancies are required to be orthogonal to the base functions (i, r 2, r~), i.e., 

62 



(R,, I) = o ,  (R~ ,  r ~) = O, (R, , ,  r ' )  = O. (n )  

Here and below the scalar product (f, g) in the Hilbert subspace F of the space La(D), 
where the region of integration is the interval [0, i], is given by the formula 

1 

([, g) = 2z~ .[ [ (r) g (r) rdr. 
0 

( 1 2 )  

Thus, from Eq. (Ii), taking account of Eq. (i0), we obtain the following system of non- 
uniform algebraic equations to determine the expansion coefficients Ak, Bk, and Ck: 

a2t azz aza �9 = , 

a31 a3z a33 d3h q 

k = p, T, (13) 

where 

d i p : a ,  dz/-- .~ , d3v---  3 , d i r = = - -  ( i ,  K,1), 

dz~-- "~ ~ (r z, ,<zl), d3~-- z 6~ (r t  R~I). 
2 x 3 :,t 

(14) 

The coefficients aij of the system matrix, Eq. (13), can easily be obtained in the form of 
Eq. (14), when one uses the definition of the scalar product of the two functions, Eq. (12). 
From the symmetry of kernels of the integral operators it follows that the coefficients of 
the matrix aij are symmetric, i.e., 

azi : atz, a3z : a ~ ,  a3t : at3. ( 1 5 )  

The procedure in calculating the coefficients aij and dik is extremely complex and cum- 
bersome. Therefore, we shall describe only the main outline. Since the inequality 
(i -- ek) exp (--6k~/C) < i holds for any values of the rarefaction parameter 6k and the ac- 
commodatlon coefflclen~ ek, then the integral operator ~k of Eq. (6) can be written in the 
form of the series 

= ' ~k(s)  ds ~ e x p ( - - c 2 - - 6 k s / c )  d c +  ( l - - c A /  ~ ( s )  ds c " e x p  - - c  z -  6h 
�9 C 

0 0 i = 1  0 0 

[(i  -- 1) t + s + sol / 

(16) 

dc. 

Using Eq. (16) we can wrlte the coefficients aij and dik in the form of infinite series. 

The coefficients aij were calculated on the M-222 computer. To reduce the machine time 
required to calculate the double integrals appearing in ai= , a procedure was used for cal- 
culatlng integrals of Abramovlch type [8]. This procedure~ used to expand the sublntegral 
functions in a series in small values of the parameter t ~ 2.5, and the asymptotic representa- 
tion of the integrals for large values of t [8], gives an accuracy in calculating the inte- 
grals of no worse than 0.1%. In addition, recurrence relations are used for the integrals 
in calculating aij and dik , to avoid a nonlntegrable singularity in the sublntegral function 

containing (i -- t2)-~/2 when t + i. 

The results of the calculations of the dimensionless Polseuille flux Qp(6p) and the 
thermocreep flux QT(6T) are shown in Tables 1 and 2 for various values of the rarefaction 
parameters ep and e T. All the results were determined with an accuracy of no worse than 
0.1%. 

Comparison of the results presented with results of the second approximation of the 
Bubnov-Galerkln method indicate that the convergence is rapid. The difference in the re- 
sults for Qp and QT in the second and third approximations does not exceed 1%. However, it 
should be noted that, while the data for the two approximations practically coincide for 
small 6p,T, the difference increases monotonically for large 6, T > I, especially in the vis- 
cous flow region. This divergence can be explained, evldently['by the fact that it is dlf- 
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TABLE i. Values of the Dimen- 
sionless Poiseuille Flux for 
Various Values of the Rarefac- 
tion Parameter ~ and the Iso- P 
thermal Accommodation Coeffi- 
cient for Tangential Momentum 
Cp 

~p 

6p 
0,6 

0,01 
0,02 
0,04 
0,06 
0,08 
0,1 
0,2 
0,4 
0,6 
0,8 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 0 , 9  0 , 8  

1,476 1,791 2,187 
1,460 1 ,764  2,144 
1,438 1 ,728  2,085 
1,423 1 ,703  2,045 
1,412 1 ,686 2,015 
1,403 1 ,669  1,993 
1,381 1 ,628  1,933 
1,379 1 ,617  1,890 
1,398 1 ,623  1,890 
1,425 1 ,640  1,906 
1,457 1 ,668  1,930 
1,657 1,863 2,118 
1,871 2,084 2,339 
2,111 2,316 2,570 
2,347 2,553 2,808 
2,587 2,793 3,048 
2,829 3,035 3,291 
3,072 3,278 3,534 
3,316 3,523 3,779 
3,562 3,769 4,025 

TABLE 2. Values of the Dimen- 
sionless Thermal Creep Flux QT 
for Various Values of the Rare- 
faction Parameter 6T and the 
Nonisothermal Accommodation Co- 
efficient for Tangential Moment- 
um E T 

E T 

6T 1 0,9 0,8 i 0,6 
I 

3,374 0,01 
3,255 0,02 
3,137 0,04 
3,044 0,06 
2,992 0,08 
2,944 0,1 
2,789 0,2 
2,720 0,4 
2,691 0,6 
2,693 0,8 
2,706 1 
2,879 2 
3,096 3 
3,327 4 
3,565 5 
3,806 6 
4,049 7 
4,293 8 
4,539 9 
4,785 10 

0,7178!0,8640 1,048 
0,6959!0,8301 0,9970 
0,6629~0,7804 0,9226 
0,6373i0,7427 0,86S8 
0,6160! 0,7119 0,8237 
0,5976!0,6851 0,7858 
0,52940,5915 0,6648 
0,446410,4836 0,5250 
0,3925 0,4170 0,4434 
0,3529 0,3697 0,3879 
0,321810,3330 0,3458 
0,2271!0,2290 0,2304 
0,1765 0,1755 0,1747 
0,1444,0,1426 0,1408 
0,1220.0,1200 !0,1179 
0,1056!0,1035 0,1015 
0,0929:0,0910 0,0889 : 
0,0830 0,0811 10,0792: 
0,0750 0,0731 0,071:3 
0,06%~ 0,0666 0,0648 

1,597 
1,462 
1,305 
1,201 

: 1,123 
1,056 
0,8297 

'0,6234 
0,5053 
0,4285 
0,3737 
0,2345 
0,1734 
0,1376 
0,1139 
0,0972 
0,0848 
0,0752 
0,0675 
0.0613 

ficult to make the discrepancies in Eq. (i0) equal to zero in the viscous flow region at an 
average capillary section which approximates the function ~k by a quadratic parabola, i.e., 
~k " Ak+ Bk r2. The validity of this divergence is confirmed also by the fact that the con- 
vergence of the results for the Poiseuille flow, where the velocity in the viscous regime is 
given by a quadratic parabola, is considerably better than for thermal creep, for which the 
velocity near the wall varies sharply. Therefore, it should be noted that the rate of con- 
vergence of the results in the different approximations of the Bubnov-Galerkin method de- 
pends appreciably on correct choice of the system of base functions ~i(r). 

It can be seen from Tables 1 and 2 that the Poiseuille flux Qp increases monotonically 
with decrease of the accommodation coefficient under any flow condition, while a different 
relation holds for the thermocreep flux QT. For example, while QT increases with decrease 
of e T in the free-molecular and near-free-molecular flow regime, it decreases in the viscous 
regime with slip. 

Accurate calculations in the second and third approximation show that for gT = 2.51 the 
thermocreep flux QT is independent of the coefficient E T. This unique dependence of thermo- 
creep on the accommodation coefficient can be explained, if one considers that under isobaric 
conditions the flux QT results from superposition of two oppositely directed fluxes, one of 
which, Qt, is due to the nonuniform temperature distribution, and the other, Qn, is due to 
the molecular number density gradient. It can be shown, using a substitution for the logarith- 
mic gradients d in n/dz ~ +d In T/dz in Eq. (3) of [i], and replacing Eq. (3) by the two in- 
dependent equations for the perturbation functions q t(r) and tin(r) that Qt and Qn increase 
with decrease of c T. However, the relation is such that superposition of these fluxes (of 
the thermocreep QT) depends differently on the surface accommodation properties in the dif- 
ferent flow regimes. 

A comparison of the results obtained with the data of [9] shows that there is superior 
agreement, within the limits of accuracy of the calculation, only in the case ~p,T = i, and 
that there is a systematic divergence (up to 20-30%) for Cp, T < i. The reason ~or this dis- 
crepancy is the incorrect transformation of the integrals in obtaining integral equations of 
the type of Eq. (i), which led to the incorrect results in [9]. In this connection, it 
should be noted that the dependence of QT on gT in viscous flow with sllp is not so weak, so 
that it can be neglected, as reco~ended in [9], in comparing theory with experiment. 
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From the viewpoint of comparing theory and experiment and extracting the appropriate 
information from the experimental data, either regarding interaction of gases with a surface, 
or concerning intermolecular interaction, it is important to have an analytical relationship 
linking the fluxes Qp and QT to the parameters 6_ and 6T, and the accommodation coefficients 
epand e T. Analytlc~l relations of this kind can ~ be obtained only in the Knudsen number 
limit. 

Thus, analysis of the results shows that in the free-molecular limit the fluxes Q and P 
QT do not depend on the order of approximation of the Bubnov-Galerkln method, and are given 
by the formulas 

Qp(6p- -~O)-  2 - - ~ t '  8 .  Qr(6r.__~O)__ 2 - - e , ,  4 
%, 3n ' : - - - - -~  ' e T 3 a '  2 (17) 

For viscous flow with sllp the asymptotic analysis of the results of solution in the 
second approximation of the Bubnov-Galerkln method lead to the following formulas for Qp and 

QT: 

6p 2 - - e  v ~',,'~ { 4 - - . n  ~ [ ( n - - 4 )  2 
Ov (6v>> 1) 

4 e; 2 2a [ ."r 

2.n z - 1 7 a - + - 3 2  ( n - - 4 )  z ~]j 1 D v 
- -  gp 8 , 62 , 2~ 4.~ 6v v 

(18) 

1 e'~ ) 1 

Q~ (6~)) 1) = ( 2 4 6~ 
e+ [ 2 ( n ~ l ) _ _ ( n _ _ 4 ) ~ T ]  + ~  

4~1, '2 

. . . . .  ] 1 + D .  r 15.-t 3_'2 8.-t 2 83.-t 160 e-" (:t - -  4) z e~ --~- 4 �9 (19) 
8n ~'~ -" 16a "r 4n 6T 61- 

V a l u e s  of the coefficients Dp and D T are given i n  the Appendix. 

Comparison of the results of the computations using the asymptotic formulas, Eqs. (18) 
and (19), with the results of numerical solutions (Tables i and 2) shows that with 6p > 2 for 
Q_ and with 6 T > 4 for QT the data coincide to within <1%, and with 6p > 4 and 6 T > 8, the 
data practically coincide completely. 

From the asymptotic representation of the results with 6p,T >>i in the third approxima- 
tion of the method one can obtain formulas for Qp and QT in the form 

6v 2 - - %  z1,'2 ( 4 - - n  ) 
___ ' 1 ' ep , ( 2 0 . )  

Qp (6 r )) 1) ~ 4 % 2 2.-t 

1 e r 1 3er  [2 (:'t 3)  (4  - -  .'t) er] - - 7  ( 2 1 )  Q ~ ( 6 ) )  1) ~ i - - �9 
2 4 6r 4.x 1/2 " 6~ 

But calculation of terms of higher order with respect to 6p, T encounters great mathematical 
difficulties, due primarily to a sharp increase in the volume of the computations. 

Comparison of Eqs. (18), (19) and (20), (21) also confirms that the results of solution 
by the Bubnov-Galerkln method in the different approximations converge better for Poiseuille 
flow than for thermocreep flow. 

Thus, analysis of the results obtained indicates that the Bubnov--Galerkln method is 
quite efficient for solving a wide circle of rarefied gasdynamic problems. With correct 
choice of a system of base functions the second approximation of the method is sufficient to 
obtain results with accuracy on the order of 1%; for increased accuracy of results one must 
use the third approximation. In addition, with the method one can obtain analytical formulas 
for macroscopic quantities. 

APPENDIX 

The coefficients Dp and D T i n  Eqs .  (18)  and  (19)  a r e  d e f i n e d  by  t h e  f o r m u l a s  

72 128 13.-ti/21 ( 245 
Dp = 10n 1'2 nt/_o ~a/2- I 8 / -:- ns/"- - -  23n' /2 -~- 2n '  '----~-' - -  
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Her e 

~s/~ - -  ep-5 -- ~- hi/2 -5 ns/2 

1-32--J/ % 4 =1/= ~tS/= p, 

~112 ~ R312 -5 ' 16~t1/2 er -5 

2 ' 2= '/e n S/2 ~ [ 16 11 " =  

( a  3/2 12 16 ) 
�9 _ 3a~/2 , e4 

-5 4 ' a ,  /2 n 3 / :  r "  

i l--eP T-5 (1 - -  eP'r)2 1 
{A}=A 1 +  ~ 32 -5 ; 

[B] = B | -5 23 -5 3s p.z)" -5 

NOTATION 

r, R, the radius vector and the capillary radius; c ffi [c[, the absolute magnitude of 
the dimensionless molecular velocity vector in a plane normal to the capillary axis; P, T, 
gas pressure and temperature; 6p, 6T, rarefaction parameters; E~, ST, isothermal and non- 
isothermal tangential momentum accommodation coefficients; QD, ~T, dlmensionless Poiseuille 
and thermal creep fluxes; Kn(r , r', ek) , kernel of the integral equations; Kn~k, integral 
operator; qi(r), base functions;Ak, Bk, Ck, expansion coefficients for the desired functions; 
alj , matrix coefficients; u, s, variables in the polar coordinate system; Qt, Qn, fluxes due 
to temperature gradients and molecule number density under isobaric conditions. 
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